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 20 

Abstract 21 

As oyster reefs continue to decline worldwide, interest has turned to restoration and aquaculture as 22 

ways to sustain the services derived from these ecologically and economically valuable habitats. 23 

While biogenic oyster reefs support a variety of ecological functions, it remains unclear whether 24 

aquaculture and its associated infrastructure can provide equivalent levels of functioning. Here, we 25 

compare consumption rates by fish and invertebrate predators, a key indicator of energy transfer 26 

between trophic levels, between reef and aquaculture habitats for the Eastern oyster (Crassostrea 27 

virginica) in three states along the Eastern US. We deployed a standardized dried squid assay 28 

(‘Squidpops’) in three different structured settings: biogenic oyster reefs, on-bottom aquaculture, 29 

and off-bottom aquaculture. For each habitat treatment, we also implemented an adjacent control 30 

in nearby bare (unstructured) sediment. These assays were repeated across three seasons at 31 

twelve locations spanning 900 km of coastline. We found that consumption rates were contingent 32 

on the presence and type of structure: they were highest near off-bottom floating bags, and the 33 

difference between structured and unstructured controls was also greatest for this treatment. 34 

Moreover, at large temporal and spatial scales, consumption rates increased with increasing 35 

temperature, and independently declined with increasing latitude. Our study revealed that certain 36 

types of aquaculture support comparable or greater consumption rates than natural reefs, 37 

suggesting an important role for this novel structured habitat in maintaining coastal food webs.  38 

Keywords: predation; foraging; Crassostrea virginica; aquaculture; restoration; Squidpops39 
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 40 

Highlights 41 

• Shellfish aquaculture is increasing to meet global demands for oysters. 42 

• Can oyster aquaculture provide similar ecosystem services as oyster reefs? 43 

• We measured bait loss on reefs and two types of aquaculture at 12 sites. 44 

• We show certain aquaculture types can increase consumption beyond that on reefs. 45 

• Novel aquaculture infrastructure may contribute to coastal ecosystem functioning.46 
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 47 

1. Introduction 48 

Once a prominent feature of nearshore ecosystems, oyster reefs have declined by an 49 

estimated 85% worldwide in the last century, making them among the most imperiled coastal 50 

habitats (Beck et al., 2011; Zu Ermgassen et al., 2012). Oysters function as both a fishery and a 51 

habitat, so their decline has both economic and ecological impacts (Grabowski et al., 2012; Newell, 52 

2004). To the latter point, oyster reefs provide complex structure that serves as refuge for juvenile 53 

and adult organisms, many of which recruit to commercially important fisheries (Lowery et al., 54 

2007; Wells, 1961). Furthermore, the oysters themselves improve water quality by filtering 55 

suspended material from the water column (Kellogg et al., 2014) and counter the effects of nutrient 56 

pollution by promoting denitrification (Hoellein et al., 2015; Piehler and Smyth, 2011). 57 

Consequently, restoration is underway throughout much of the world as a way to enhance local 58 

populations, revitalize oyster fisheries, and safeguard the economic and ecosystem services 59 

provided by healthy reefs (Beck et al., 2011; Bersoza Hernández et al., 2018).  60 

At the same time, bivalve aquaculture has experienced tremendous growth over the last 50 61 

years, now accounting for more than half of all aquaculture production, which itself accounts for 62 

46% of all fisheries production worldwide (FAO, 2020). As shellfish aquaculture continues to 63 

expand, there arises a potential conflict for available space and resources: aquaculture operations 64 

often occupy bottom area that is suitable for restoration of biotic habitats—including foundational 65 

species such as oysters and submersed aquatic vegetation (Dumbauld et al., 2009; Orth et al., 2017). 66 

Moreover, with growing interest in oyster restoration for purposes other than biomass production, 67 

such as water quality management (Bricker et al., 2017), there is an urgent need to understand 68 

whether aquaculture operations can provide comparable services as the natural systems they 69 

potentially replace. For example, denitrification rates can be significantly higher at aquaculture 70 
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sites compared to natural reefs (Humphries et al., 2016), although this has not been observed 71 

everywhere (see Lunstrum et al., 2018).  72 

A major service of oyster reefs is the provision of habitat. The complex three-dimensional 73 

structure provided by reefs supports a diverse and abundant assemblage of invertebrates and small 74 

fishes, providing them refuge and concentrating their forage base (Tolley and Volety, 2005). The 75 

addition of reef structure in systems otherwise dominated by soft-sediments also increases nekton 76 

biomass and enhances fishery production and value (Coen et al., 1999; Humphries and La Peyre, 77 

2015; Peterson et al., 2003; Ziegler et al., 2018; zu Ermgassen et al., 2016). Although aquaculture 78 

does not produce identical biogenic structure to reefs, the addition of off-bottom floating bags in 79 

relatively deep water or of fixed cages on shallow bottoms can increase the availability of hard 80 

structure in soft sediment habitats. This structure may mimic that of oyster reefs in offering refuge 81 

and/or foraging habitat. Indeed, both invertebrate epi- and macrofauna (Dealteris et al., 2004; 82 

Dumbauld et al., 2009; Erbland and Ozbay, 2008) and their fish predators (Tallman and Forrester, 83 

2007) have all been observed at similar or greater densities on oyster aquaculture gear than on 84 

biogenic reefs (reviewed in Callier et al., 2018).  85 

The concentration of both predators and prey on oyster reefs might be expected to lead to 86 

higher rates of predation and greater trophic transfer, as has been observed in many structured 87 

marine ecosystems (Aronson and Heck, 1995; Lefcheck et al., 2019). Alternately, the three-88 

dimensional habitat may provide increased refuge, reducing consumption relative to open areas 89 

where prey are more exposed and therefore more vulnerable (Crowder and Cooper, 1982; 90 

Summerson and Peterson, 1984). Whether either of these expectations are associated with 91 

aquaculture infrastructure remains relatively unexplored (but see Clarke 2017), although 92 

differences in predation between artificial structures and natural coastal habitats have recently 93 

been observed for docks and piers (Rodemann and Brandl, 2017).  94 
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Historically, experiments to test the relationship between structure and ecological 95 

processes such as predation, competition, and trophic transfer have been challenging to implement 96 

in the field at large scales. For example, traditional methods such as tethering may lead to issues 97 

with prey availability, create artifacts by impeding prey behavior in ways that varies across 98 

habitats, and result in mismatch of prey identities at scales that cross whole-estuary, regional, or 99 

even biogeographic realms (Peterson and Black, 1994). One solution is the ‘Squidpop,’ a 100 

standardized assay of relative consumption using a dried squid bait (Clarke, 2017; Duffy et al., 101 

2015; Rodemann and Brandl, 2017) (Fig. 1A). In contrast to traditional tethering assays, dried 102 

squid presents a standard prey or carrion item, and thus is advantageous for large-scale 103 

comparative experiments where the same prey species may not be available in each location (Duffy 104 

et al., 2015; Whalen et al., 2020). It is also of marine origin, resistant to degradation in the water, 105 

and is easily shipped and stored for long periods. The loss of bait from Squidpops through time has 106 

positively correlated with the abundance, length, composition, and diversity of mesopredators in 107 

the vicinity (Duffy et al., 2015; Rhoades et al., 2019; Whalen et al., 2020), including a range of fishes 108 

and invertebrates (Musrri et al., 2019; Whalen et al., 2020), thus making Squidpops a useful method 109 

for the aims of our study. 110 

Here, we investigated whether the addition and type of structure modifies consumption 111 

rates across shallow oyster-dominated subtidal habitats. Specifically, we deployed Squidpops at 112 

multiple kinds of aquaculture operations and biogenic reefs of the Eastern oyster, Crassostrea 113 

virginica, along the east coast of the US. These assays were repeated over several seasons to further 114 

evaluate trends in consumption through time. We also paired each assay with an adjacent soft-115 

sediment location to serve as an unstructured control. We aimed to broadly test whether and how 116 

artificial and natural structure affects consumption rates in oyster-dominated habitats. 117 

2. Materials and Methods 118 
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2.1 Study Sites 119 

We selected twelve locations along the east coast of the US (Fig. 2). In North Carolina 120 

(abbreviated NC), we conducted the experiments at an off-bottom floating bag aquaculture 121 

operation (Cedar Island: 35.00 N, -76.30 W) and two oyster reefs (North River Marsh: 34.72 N, -122 

76.61 W). In Virginia (VA), we deployed our assays at three sites within the York River estuary: a 123 

floating bag oyster aquaculture operation (Big Island Aquaculture Company: 37.27 N, -76.39 W), an 124 

on-bottom rack-and-bag aquaculture site (Virginia Institute of Marine Science: 37.25 N, -76.50 W), 125 

and a restored oyster reef (Timberneck Creek: 37.29 N, -76.54 W). Finally, in Rhode Island (RI), we 126 

selected three on-bottom rack-and-bag operations (Narragansett Bay: 41.65 N, -71.26 W; Ninigret 127 

Pond: 41.36 N, -71.67 W; and Winnapaug Pond: 41.32 N, -71.79 W) with adjacent biogenic reefs 128 

(Narragansett Bay: 41.64 N, -71.24 W; Ninigret Pond: 41.35 N, -71.69 W; and Winnapaug Pond: 129 

41.33 N, -71.80 W). Examples of each habitat type are given in Figure S1. We deployed the Squidpop 130 

assays in July, August, October, and December 2016 in NC; in June, July, August, October, and 131 

November 2016 in VA; and in July and October 2016 in RI. 132 

2.2 Consumption Assay 133 

A Squidpop is a 1.3-cm diameter circle of dried squid (Golden Squid Brand, Hong Kong, 134 

China) tethered to a 76-cm garden stake (EcoStake). Squids are attached using approximately 5-cm 135 

of monofilament line that is affixed to the stake. These stakes are then inserted into the sediment so 136 

that approximately 20-cm of stake is exposed above the surface (Fig. 1A). On oyster reefs, stakes 137 

were deployed as close to the reefs as possible while still providing soft enough substrate to insert 138 

the stake to the standard depth. For on-bottom aquaculture operations, stakes were deployed 139 

immediately adjacent to the cages, and for off-bottom, underneath the floating bags. We paired each 140 

structured assay with an unstructured control located in a bare substrate area 50-100 m distant 141 

and at approximately the same depth and exposure. For each deployment, we set out n = 25 142 
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Squidpops per treatment at low tide. We checked the Squidpops after 1- and 24-hours and scored 143 

them as present or consumed (absent). For each deployment, we also deployed GoPro Hero 3+ 144 

video cameras aimed at a separate uncounted replicate to capture the identity of any potential 145 

predators. Because of poor visibility across most sites, we did not formally analyze any of the GoPro 146 

footage other than to provide some anecdotal examples of predators interacting with the Squidpops 147 

(Fig. 1B-D). We used a data sonde (YSI Instruments) to record temperature and salinity at each site 148 

during each sampling event, and a Secchi disk to measure turbidity at sites in two regions (NC and 149 

VA). 150 

2.3 Statistical Analysis 151 

We analyzed our split-plot design using generalized linear mixed effects models as 152 

implemented in the lme4 package (Bates et al., 2015) in the R statistical software version 4.0.2 (R 153 

Core Team, 2017)r. We modeled the two-way interaction between the within-plot treatment 154 

(structured vs. unstructured habitat) and the between-plot treatment (reef, on-bottom, and/or off-155 

bottom aquaculture habitat), plus the additional main effects of latitude, temperature, and salinity. 156 

We fit the binary response (presence or absence of squid bait) to a binomial distribution with a 157 

logit link. We included crossed random effects of month and site to account for potential temporal 158 

and spatial autocorrelation among sites and through time. We report marginal and conditional R2 159 

values reflecting the deviance explained by fixed effects alone and the fixed and random effects, 160 

respectively, which were obtained using the piecewiseSEM package (Lefcheck, 2016). Because not 161 

all treatments were present at all sites, we re-fit the same model within each region (NC, VA, RI), 162 

removing latitude as a predictor and only including a random effect of month. For the within-region 163 

models for NC and VA, we included an additional predictor of Secchi depth. For all models, we held 164 

an experiment wide α = 0.05. All data and code necessary to replicate all analyses and figures are 165 

included in the supplementary materials. 166 
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3. Results 167 

 After 24 h and across all sites and months, we found that the average effect of structure on 168 

consumption rates depended on the type of structure (Table 1). Specifically, the loss of Squidpops 169 

underneath off-bottom floating bags was higher and enhanced to a greater degree relative to the 170 

bare sediment than in the other two habitat treatments (P < 0.001) (Fig. 3A; see supplementary 171 

code for reproduction using model-estimated means). This trend was dominated by the off-bottom 172 

floating bag aquaculture site in VA, which exhibited 1.6x greater loss of Squidpops on average than 173 

in the nearby unstructured control (Fig. 4). Consumption was lowest adjacent to on-bottom rack-174 

and-bags, which significantly but minimally increased consumption relative to the unstructured 175 

control over the course of the study (P = 0.002) (Fig. 3A). This effect was driven primarily by sites 176 

in RI (Fig. 4). In contrast to the two types of aquaculture, consumption rates were generally lower 177 

immediately adjacent to biogenic reefs than in nearby bare sediment (Fig. 3A), driven by sites in 178 

both NC and RI (Fig. 4). Consumption rates were maximal in the summer and declined through the 179 

fall and winter in NC and VA, while in RI, consumption was greater in October than in July (Fig. 5).  180 

In general, salinity and Secchi depth varied among sites and from month-to-month, while 181 

unsurprisingly, temperature declined in all regions from June-Dec (Fig. S2). We found that 182 

consumption rates significantly declined with latitude, significantly and independently increased 183 

with temperature, and was not associated with salinity (Table 1, Fig. 6). While there are 184 

undoubtedly many other constraints on foraging in these systems, our fixed effects alone (including 185 

experimental treatments and the above covariates) explained nearly half of the deviance in 186 

consumption rates (marginal R2 = 0.47) , with a further 22% explained by our random effects of 187 

month and site (conditional R2 = 0.69).  188 

 Examining loss of Squidpops after only 1 h revealed similar trends to the 24 h analysis, with 189 

a few distinctions. First, consumption rates were overall lower after 1 h (11-44% loss on average, 190 
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compared to 37-75% after 24 h; Fig. 3B), leading to an slightly lower proportion of explained 191 

deviance (marginal R2 = 0.45, conditional R2 = 0.64). Second, the average consumption rate was 192 

approximately equivalent at biogenic reefs and on-bottom rack-and-bag aquaculture after only 1 h 193 

(Fig. 3B), leading to a non-significant interaction with structure involving these two habitat 194 

treatments (Table S1). Third, the enhancement in consumption beneath off-bottom floating bags 195 

relative to adjacent sediment was still significant and even stronger after 1 h than 24 h—a 2.2x 196 

increase (Fig. 3). Temperature was the only significant environmental covariate predicting 197 

consumption rates after 1 h (Table S1). 198 

 Finally, we found qualitatively identical results to the main analysis when fitting within-199 

region models for NC and RI (Tables S2, S3), except we did not recover a significant two-way 200 

interaction in VA due to similar levels of consumption observed near natural reefs and on-bottom 201 

racks relative to their adjacent unstructured controls. Instead, in VA, consumption was significantly 202 

increased under floating bags relative to the other two structured habitats (Table S4). Similarly, 203 

temperature remained significant in NC and RI but not VA. For the two regions where Secchi depth 204 

was measured, it had significant but contrasting effects: consumption was greater at greater Secchi 205 

depths (higher clarity) in VA (Table S4), but lower at greater Secchi depths in NC (Table S2). 206 

4. Discussion 207 

Our study of consumption rates near artificial structures associated with oyster aquaculture 208 

versus those on biogenic reefs revealed a strong interaction between the presence and type of 209 

structure on loss of a standardized bait after both 1 and 24 h which also varied across locations. 210 

Variation in consumption pressure between the different structured habitats and bare sediment 211 

controls likely stem from differences in their water column position and the nature of the hard 212 

structure, which in turn affects the type and efficiency of predators and scavengers that forage on 213 

these habitats across the three biogeographic regions. 214 
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In the case of off-bottom floating bags, assays were deployed ~1 m below the bags and 215 

slightly above the benthos, providing a greater three-dimensional volume over which mobile 216 

consumers can forage. Like natural substrates, the sides and underside of the floating bags support 217 

an abundant and diverse faunal community that can be exploited by predators. A previous study on 218 

floating bag operations in Virginia reported faunal densities ranging from 12,000-92,000 219 

individuals per bag, comprised of worms, crustaceans, and small fishes also common to biogenic 220 

reefs (O’Beirn et al., 2004), and similarly high faunal densities have been reported on floating bag 221 

aquaculture in Delaware Bay (Marenghi et al., 2010) and New Brunswick, Canada (Mallet et al., 222 

2006). Moreover, the high animal biomass associated with the off-bottom floating bags can increase 223 

nutrient delivery to the sediments below the bags in areas with low water velocities, supporting 224 

productive epibenthic and infaunal communities (Erbland and Ozbay, 2008; Mallet et al., 2006). It is 225 

likely then that predators and scavengers already attracted to the high densities of prey both on 226 

and below the off-bottom aquaculture also honed in on the Squidpops, leading to the overall highest 227 

consumption rate in this habitat treatment. 228 

While on-bottom racks have similar capacity to enhance faunal communities (Mallet et al., 229 

2006; Marenghi et al., 2010), they are often positioned inshore in shallow areas as to improve 230 

accessibility by growers. Consequently, the on-bottom infrastructure is periodically exposed by 231 

tides and remains relatively inaccessible to predators for long stretches, unlike floating bags in the 232 

water column which rise and fall with the tide. Periodic exposure may also explain lower rates 233 

observed on intertidal reefs in NC, where access by small fishes is also limited (Ziegler et al., 2018). 234 

Even when inundated by the tide, predators may have more difficulty locating and consuming the 235 

Squidpop assays when they were hidden or restricted by structured habitats on the bottom than on 236 

exposed bare substrate underneath the floating bags (Crowder and Cooper, 1982). 237 

Oyster reefs were the only structured habitat where loss of squid bait was generally greater 238 

in the unstructured control. There are several potential explanations for this finding. First, habitat 239 
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complexity and landscape context may alter foraging strategies: biogenic oyster reefs can vary 240 

considerably in height, aerial extent, exposure, and complexity, which contrasts the uniformity of 241 

aquaculture structure. In turn, larger, more complex or connected reef systems may provide more 242 

shelter for mesopredators who target the Squidpops. For example, single in situ measurements of 243 

rugosity at two of our sites based on the ‘chain-link method’ suggest more heterogenous reefs in VA 244 

compared to NC (60.7 cm per 0.5 m length in NC vs. 154.5 cm per 0.5 m in VA), potentially 245 

explaining the higher rates of consumption adjacent to reefs there (Fig. 4). Second, the total 246 

footprint of remaining biogenic reefs is perhaps less in the regions studied relative to bottom 247 

covered by aquaculture, meaning that there is simply a lot less structure over which to forage on 248 

reefs, forcing predators to forage in adjacent unstructured sediments. 249 

A final explanation for the differences in predation across structured habitats may be the 250 

spatial distribution of our sites. Floating bag operations were only tested at the southern and 251 

intermediate sites (NC and VA) while rack-and-bag operations were only tested at the intermediate 252 

and northern sites (VA and RI) (Fig. 2), largely due to different adoption of these two gear types 253 

across different states (Baillie et al., in review). Latitude emerged as a significant predictor of bait 254 

loss from our mixed model, with higher consumption at lower latitudes (Table 1, Fig. 6A). In theory, 255 

the effect of latitude is independent from habitat type in our statistical model, but this inference is 256 

slightly conflated by the uneven implementation of habitats across the latitudinal gradient. Thus, 257 

higher predation in certain gear types, like off-bottom floating bags, may be partially because this 258 

gear type was only tested at low latitudes, and vice versa for on-bottom aquaculture.  259 

Biogenic oyster reefs, however, were tested across all three regions, suggesting that the 260 

latitudinal effect may still reflect ecological processes operating at broad scales. For example, biotic 261 

interactions are typically stronger at lower latitudes due to greater productivity and diversity of 262 

these communities (Schemske et al., 2009), leading to similar trends in seagrass bed fauna 263 

(Reynolds et al., 2018) and terrestrial caterpillars (Roslin et al., 2017). GoPro footage revealed 264 
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potentially different consumers across the range of sites whose distribution and dominance differ 265 

along the latitudinal gradient, such as pinfish (Lagodon rhomboides, Fig. 1D) which are rarely 266 

present north of NC. Indeed, a recent paper demonstrated strong biogeographic differences in 267 

resident food webs across oyster reefs south of our study area (Grabowski et al., 2020). Reef 268 

properties may also change with latitude: live biomass, reef height and juvenile recruitment all vary 269 

with increasing latitude which likely affects the amount of available habitat for prey and predators 270 

(Byers et al., 2015), and could potentially explain why consumption rates were much lower in RI 271 

than in the other two regions. Future studies could explore a wider gradient in reef properties using 272 

the standard Squidpop assay. 273 

We also found a strong effect of temperature in our model: as temperature increased, so did 274 

bait loss (Table 1, Fig. 6B). We note that this effect is independent of latitude: even though higher 275 

latitudes are generally cooler, there was much greater variation in temperature through time than 276 

across space, making temperature more of a seasonal rather than a spatial indicator. The 277 

temperature effect likely stems from higher metabolic demands leading to greater resource 278 

utilization in the summer (Brown, 2004) as well as seasonal turnover in the predator communities. 279 

Demersal fish biomass and diversity peak in the early summer months in NC and VA (Lefcheck et 280 

al., 2014; Ziegler et al., 2018) and in late summer and early fall in RI (Oviatt and Nixon, 1973), 281 

tracking the observed consumptions rates through time in these regions (Fig. 5). 282 

Finally, our model revealed that consumption rates were uncorrelated with changing 283 

salinity (Table 1, Fig. 6C). One potential explanation is that the predator community (and/or their 284 

preference for the squid bait) does not respond to or change drastically along the salinity gradient 285 

captured during our survey (14-33 psu), especially for the more variable estuarine sites in NC and 286 

VA. The blue crab (Callinectes sapidus), for example, was often found interacting with the Squidpops 287 

in all three regions (Fig. 1B) and can be abundant at mesohaline salinities and higher. Furthermore, 288 

the contrasting results of Secchi depth for in NC and VA suggest that the effect of water clarity is not 289 
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well resolved in the current study. Thus, both salinity and water clarity are deserving of further 290 

attention with respect to their effects on consumption in marine and estuarine systems. 291 

5. Conclusions 292 

 That significant effects of habitat type (particularly off-bottom floating bags), structure, 293 

latitude, and temperature on consumption emerged despite considerable spatial and environmental 294 

variation suggests that, unlike other context-dependent functions such as denitrification 295 

(Humphries et al., 2016; Lunstrum et al., 2018; Smyth et al., 2015), consumer pressure may be 296 

reliably enhanced by floating-bag aquaculture. Such operations often occur in areas that are too 297 

deep or muddy to allow for natural restoration or on-bottom aquaculture (Dumbauld et al., 2009), 298 

and thus may subsidize trophic processes occurring in these unstructured habitats. While biogenic 299 

reefs provide many additional services, such as nursery habitat and shoreline protection (Beck et 300 

al., 2011), the finding that aquaculture may increase trophic transfer should inform guidance on the 301 

placement of aquaculture leases and evaluation of their ecosystem impacts relative to natural 302 

systems. 303 
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 475 

Table 1. Output from a generalized linear mixed effects model predicting consumption (as the log 476 

odds ratio) after 24 h as a function of within-plot (structured vs. unstructured) by between-plot 477 

treatments (reef—as the reference level—compared to off-bottom floating bag and on-bottom rack-478 

and-bag aquaculture) and other covariates across all regions.  479 

Predictor  Estimate Std. Error Z-value P-value 
Intercept 17.4880 6.9990 2.4986 0.0125 

Structured vs. unstructured -0.9187 0.2281 -4.0279 <0.001 
Habitat (off-bottom) -1.5400 1.1551 -1.3332 0.1825 
Habitat (on-bottom) -1.0575 0.8556 -1.2359 0.2165 

Latitude -0.5448 0.1810 -3.0094 0.0026 
Temperature 0.2548 0.0417 6.1150 <0.001 

Salinity -0.0801 0.0412 -1.9440 0.0519 
Structured-x-on-bottom 2.4023 0.3790 6.3381 <0.001 
Structured-x-off-bottom 1.3615 0.3459 3.9358 <0.001 

480 
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 481 

 482 

Figure 1. (A) The Squidpop is a piece of dried commercial squid tethered to a garden stake inserted 483 

approximately 20 cm above the sediment surface. (B) The blue crab (Callinectes sapidus) 484 

interacting with Squidpops in Virginia (facing toward the rear Squidpop, arrow). (C) A juvenile 485 

black sea bass (Centropristis striata) before taking the bait in Rhode Island. (D) A pinfish (Lagodon 486 

rhomboides) after having consumed the squid in North Carolina.487 
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 488 

 489 

Figure 2. A map of study sites, including biogenic oyster reefs (black triangles) and both on-bottom 490 

(red circle) and off-bottom (blue square) oyster aquaculture operations.491 
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 492 

 493 

Figure 3. Plot of average consumption rate after (A) 24 h and (B) 1 h for within-plot (structured vs. 494 

unstructured) and between-plot treatments (reef, off-bottom floating bag, and on-bottom rack-and-495 

bag aquaculture). Bars are means ± 1 pooled standard deviation.496 
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 498 

Figure 4. Mean consumption across all months ± 1 standard deviation(pooled) for each habitat 499 

across all regions, and for each individual region.500 
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 501 

 502 

Figure 5. Time series of consumption (as proportional loss of Squidpops) by region, between-plot 503 

(reef, off-bottom floating bag, and on-bottom rack-and-bag aquaculture), and within-plot 504 

treatments (structured vs. unstructured). 505 
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 506 

 507 

Figure 6. Predicted effects of environmental covariates on consumption rates from a generalized 508 

linear mixed effects model (Table 1). Fitted lines represent the independent (partial) effects given 509 

the contributions of other variables in the model (Z). Solid lines indicate significant trend (P < 0.05). 510 

The distribution of raw data points is given by rug plots along the x-axis and colored by region. 511 
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